Max-Min Problems in R^{n} and the Hessian Matrix

Prerequisite: Section 6.3, Orthogonal Diagonalization

In this section, we study the problem of finding local maxima and minima for realvalued functions on \mathbb{R}^{n}. The method we describe is the higher-dimensional analogue to finding critical points and applying the second derivative test to functions on \mathbb{R} studied in first-semester calculus.

- Taylor's Theorem in \mathbb{R}^{n}

Let $f \in C^{2}\left(\mathbb{R}^{n}\right)$, where $C^{2}\left(\mathbb{R}^{n}\right)$ is the set of real-valued functions defined on \mathbb{R}^{n} having continuous second partial derivatives. The method for solving for local extreme points of f relies upon Taylor's Theorem with second degree remainder terms, which we state here without proof. (In the following theorem, an open hypersphere centered at \mathbf{x}_{0} is a set of the form $\left\{\mathbf{x} \in \mathbb{R}^{n} \mid\left\|\mathbf{x}-\mathbf{x}_{0}\right\|<r\right\}$ for some positive real number r.)

THEOREM 1
(Taylor's Theorem in \mathbb{R}^{n}) Let A be an open hypersphere centered at $\mathbf{x}_{0} \in \mathbb{R}^{n}$, let \mathbf{u} be a unit vector in \mathbb{R}^{n}, and let $t \in \mathbb{R}$ such that $\mathbf{x}_{0}+t \mathbf{u} \in A$. Suppose $f: A \rightarrow \mathbb{R}$ has continuous second partial derivatives throughout A; that is, $f \in C^{2}(A)$. Then there is a c with $0 \leq c \leq t$ such that

$$
\begin{aligned}
f\left(\mathbf{x}_{0}+t \mathbf{u}\right)= & f\left(\mathbf{x}_{0}\right)+\left.\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\right|_{\mathbf{x}_{0}}\left(t u_{i}\right)+\left.\frac{1}{2} \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}\right|_{\mathbf{x}_{0}+c \mathbf{u}}\left(t^{2} u_{i}^{2}\right) \\
& +\left.\sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right|_{\mathbf{x}_{0}+c \mathbf{u}}\left(t^{2} u_{i} u_{j}\right) .
\end{aligned}
$$

Taylor's Theorem in \mathbb{R}^{n} is derived from the familiar Taylor's Theorem in \mathbb{R} by applying it to the function $g(t)=f\left(\mathbf{x}_{0}+t \mathbf{u}\right)$. In \mathbb{R}^{2}, the formula in Taylor's Theorem is

$$
\begin{aligned}
f\left(\mathbf{x}_{0}+t \mathbf{u}\right)= & f\left(\mathbf{x}_{0}\right)+\left.\frac{\partial f}{\partial x}\right|_{\mathbf{x}_{0}}\left(t u_{1}\right)+\left.\frac{\partial f}{\partial y}\right|_{\mathbf{x}_{0}}\left(t u_{2}\right) \\
& +\left.\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\right|_{\mathbf{x}_{0}+c \mathbf{u}}\left(t^{2} u_{1}^{2}\right)+\left.\frac{1}{2} \frac{\partial^{2} f}{\partial y^{2}}\right|_{\mathbf{x}_{0}+c \mathbf{u}}\left(t^{2} u_{2}^{2}\right) \\
& +\left.\frac{\partial^{2} f}{\partial x \partial y}\right|_{\mathbf{x}_{0}+c \mathbf{u}}\left(t^{2} u_{1} u_{2}\right)
\end{aligned}
$$

Recall that the gradient of f is defined by $\nabla f=\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right]$. If we let $\mathbf{v}=t \mathbf{u}$, then, in $\mathbb{R}^{2}, \mathbf{v}=\left[v_{1}, v_{2}\right]=\left[t u_{1}, t u_{2}\right]$, and so the sum $\left.\frac{\partial f}{\partial x}\right|_{\mathbf{x}_{0}}\left(t u_{1}\right)+$ $\left.\frac{\partial f}{\partial y}\right|_{\mathbf{x}_{0}}\left(t u_{2}\right)$ simplifies to $\left(\left.\nabla f\right|_{\mathbf{x}_{0}}\right) \cdot \mathbf{v}$. Also, since f has continuous second partial

[^0]derivatives, we have $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$. Therefore,
\[

$$
\begin{aligned}
& \frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(t^{2} u_{1}^{2}\right)+\frac{1}{2} \frac{\partial^{2} f}{\partial y^{2}}\left(t^{2} u_{2}^{2}\right)+\frac{\partial^{2} f}{\partial x \partial y}\left(t^{2} u_{1} u_{2}\right) \\
= & \frac{1}{2} v_{1}\left(\frac{\partial^{2} f}{\partial x^{2}} v_{1}+\frac{\partial^{2} f}{\partial x \partial y} v_{2}\right)+\frac{1}{2} v_{2}\left(\frac{\partial^{2} f}{\partial y \partial x} v_{1}+\frac{\partial^{2} f}{\partial y^{2}} v_{2}\right) \\
= & \frac{1}{2} \mathbf{v}^{T}\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right] \mathbf{v},
\end{aligned}
$$
\]

where \mathbf{v} is considered to be a column vector. The matrix

$$
\mathbf{H}=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right]
$$

in this expression is called the Hessian matrix for f. Thus, in the \mathbb{R}^{2} case, with $\mathbf{v}=t \mathbf{u}$, the formula in Taylor's Theorem can be written as

$$
f\left(\mathbf{x}_{0}+\mathbf{v}\right)=f\left(\mathbf{x}_{0}\right)+\left(\left.\nabla f\right|_{\mathbf{x}_{0}}\right) \cdot \mathbf{v}+\frac{1}{2} \mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}+k \mathbf{v}}\right) \mathbf{v}
$$

for some k with $0 \leq k \leq 1$ (where $k=\frac{c}{t}$). While we have derived this result in \mathbb{R}^{2}, the same formula holds in \mathbb{R}^{n}, where the Hessian \mathbf{H} is the matrix whose (i, j) entry is $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$.

- Critical Points

If A is a subset of \mathbb{R}^{n}, then we say that $f: A \rightarrow \mathbb{R}$ has a local maximum at a point $\mathbf{x}_{0} \in A$ if and only if there is an open neighborhood \mathcal{U} of \mathbf{x}_{0} such that $f\left(\mathbf{x}_{0}\right) \geq f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{U}$. A local minimum for a function f is defined analogously.

THEOREM 2

Let A be an open hypersphere centered at $\mathbf{x}_{0} \in \mathbb{R}^{n}$, and let $f: A \rightarrow \mathbb{R}$ have continuous first partial derivatives on A. If f has a local maximum or a local minimum at \mathbf{x}_{0}, then $\nabla f\left(\mathbf{x}_{0}\right)=\mathbf{0}$.

Proof If \mathbf{x}_{0} is a local maximum, then $f\left(\mathbf{x}_{0}+h \mathbf{e}_{i}\right)-f\left(\mathbf{x}_{0}\right) \leq 0$ for small h. Then, $\lim _{h \rightarrow 0^{+}} \frac{f\left(\mathbf{x}_{0}+h \mathbf{e}_{i}\right)-f\left(\mathbf{x}_{0}\right)}{h} \leq 0$. Similarly, $\lim _{h \rightarrow 0^{-}} \frac{f\left(\mathbf{x}_{0}+h \mathbf{e}_{i}\right)-f\left(\mathbf{x}_{0}\right)}{h} \geq 0$. Hence, for the limit to exist, we must have $\left.\frac{\partial f}{\partial x_{i}}\right|_{\mathbf{x}_{0}}=0$. Since this is true for each $i,\left.\nabla f\right|_{\mathbf{x}_{0}}=\mathbf{0}$. A similar proof works for local minimums.

QED
Points \mathbf{x}_{0} at which $\nabla f\left(\mathbf{x}_{0}\right)=\mathbf{0}$ are called critical points.

Example $1 \quad$ Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=7 x^{2}+6 x y+2 x+7 y^{2}-22 y+23
$$

Then $\nabla f=[14 x+6 y+2,6 x+14 y-22]$. We find critical points for f by solving $\nabla f=\mathbf{0}$. This is the linear system

$$
\left\{\begin{array}{r}
14 x+6 y+2=0 \\
6 x+14 y-22=0
\end{array}\right.
$$

which has the unique solution $\mathbf{x}_{0}=[-1,2]$. Hence, by Theorem 2, $(-1,2)$ is the only possible extreme point for f. (We will see later that $(-1,2)$ is a local minimum.)

[^1]
- Sufficient Conditions for Local Extreme Points

If \mathbf{x}_{0} is a critical point for a function f, how can we determine whether \mathbf{x}_{0} is a local maximum or a local minimum? For functions on \mathbb{R}, we have the second derivative test from calculus, which says that if $f^{\prime \prime}\left(\mathbf{x}_{0}\right)<0$, then \mathbf{x}_{0} is a local maximum, but if $f^{\prime \prime}\left(\mathbf{x}_{0}\right)>0$, then \mathbf{x}_{0} is a local minimum. We now derive a similar test in \mathbb{R}^{n}.

Consider the following formula from Taylor's Theorem:

$$
f\left(\mathbf{x}_{0}+\mathbf{v}\right)=f\left(\mathbf{x}_{0}\right)+\nabla f\left(\mathbf{x}_{0}\right) \cdot \mathbf{v}+\frac{1}{2} \mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}+k \mathbf{v}}\right) \mathbf{v}
$$

At a critical point, $\nabla f\left(\mathbf{x}_{0}\right)=\mathbf{0}$, and so

$$
f\left(\mathbf{x}_{0}+\mathbf{v}\right)=f\left(\mathbf{x}_{0}\right)+\frac{1}{2} \mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}+k \mathbf{v}}\right) \mathbf{v}
$$

Hence, if $\mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}+k \mathbf{v}}\right) \mathbf{v}$ is positive for all small nonzero vectors \mathbf{v}, then f will have a local minimum at \mathbf{x}_{0}. (Similarly, if $\mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}+k \mathbf{v}}\right) \mathbf{v}$ is negative, f will have a local maximum.) But since we assume that f has continuous second partial derivatives, $\mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}+k \mathbf{v}}\right) \mathbf{v}$ is continuous in \mathbf{v} and k, and will be positive for small \mathbf{v} if $\mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}}\right) \mathbf{v}$ is positive for all nonzero \mathbf{v}. Hence,

THEOREM 3

Given the conditions of Taylor's Theorem for a set A and a function $f: A \rightarrow$ \mathbb{R}, f has a local minimum at a critical point \mathbf{x}_{0} if $\mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}}\right) \mathbf{v}>0$ for all nonzero vectors \mathbf{v}. Similarly, f has a local maximum at a critical point \mathbf{x}_{0} if $\mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}}\right) \mathbf{v}<0$ for all nonzero vectors \mathbf{v}.

- Positive Definite Quadratic Forms

If \mathbf{v} is a vector in \mathbb{R}^{n}, and \mathbf{A} is an $n \times n$ matrix, the expression $\mathbf{v}^{T} \mathbf{A v}$ is known as a quadratic form. (For more details on the general theory of quadratic forms, see Section 8.11.) A quadratic form such that $\mathbf{v}^{T} \mathbf{A v}>0$ for all nonzero vectors \mathbf{v} is said to be positive definite. Similarly, a quadratic form such that $\mathbf{v}^{T} \mathbf{A v}<0$ for all nonzero vectors \mathbf{v} is said to be negative definite.

Now, in particular, the expression $\mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}}\right) \mathbf{v}$ in Theorem 3 is a quadratic form. Theorem 3 then says that if $\mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}}\right) \mathbf{v}$ is a positive definite quadratic form at a critical point \mathbf{x}_{0}, then f has a local minimum at \mathbf{x}_{0}. Theorem 3 also says that if $\mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}}\right) \mathbf{v}$ is a negative definite quadratic form at a critical point \mathbf{x}_{0}, then f has a local maximum at \mathbf{x}_{0}. Therefore, we need a method to determine whether a quadratic form of this type is positive definite or negative definite.

Now, the Hessian matrix $\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}}\right)$, which we will abbreviate as \mathbf{H}, is symmetric because $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}$ (since $f \in C^{2}(A)$). Hence, by Theorem 6.20, \mathbf{H} can be orthogonally diagonalized. That is, there is an orthogonal matrix \mathbf{P} such that $\mathbf{P H P}^{T}=\mathbf{D}$, a diagonal matrix, and so, $\mathbf{H}=\mathbf{P}^{T} \mathbf{D P}$. Hence, $\mathbf{v}^{T} \mathbf{H v}=$ $\mathbf{v}^{T} \mathbf{P}^{T} \mathbf{D P} \mathbf{v}=(\mathbf{P} \mathbf{v})^{T} \mathbf{D}(\mathbf{P} \mathbf{v})$. Letting $\mathbf{w}=\mathbf{P} \mathbf{v}$, we get $\mathbf{v}^{T} \mathbf{H} \mathbf{v}=\mathbf{w}^{T} \mathbf{D} \mathbf{w}$. But \mathbf{P} is nonsingular, so as \mathbf{v} ranges over all of \mathbb{R}^{n}, so does \mathbf{w}, and vice-versa. Thus,

[^2]$\mathbf{v}^{T} \mathbf{H v}>0$ for all nonzero \mathbf{v} if and only if $\mathbf{w}^{T} \mathbf{D} \mathbf{w}>0$ for all nonzero \mathbf{w}. Now, \mathbf{D} is diagonal, and so $\mathbf{w}^{T} \mathbf{D} \mathbf{w}=d_{11} w_{1}^{2}+d_{22} w_{2}^{2}+\cdots+d_{n n} w_{n}^{2}$. But the $d_{i i}$'s are the eigenvalues of \mathbf{H}. Thus, it follows that $\mathbf{w}^{T} \mathbf{D} \mathbf{w}>0$ for all nonzero \mathbf{w} if and only if all of these eigenvalues are positive. (Set $\mathbf{w}=\mathbf{e}_{i}$ for each i to prove the "only if" part of this statement.) Similarly, $\mathbf{w}^{T} \mathbf{D w}<0$ for all nonzero \mathbf{w} if and only if all of these eigenvalues are negative. Hence,

THEOREM 4

A symmetric matrix \mathbf{A} defines a positive definite quadratic form $\mathbf{v}^{T} \mathbf{A v}$ if and only if all of the eigenvalues of \mathbf{A} are positive. A symmetric matrix \mathbf{A} defines a negative definite quadratic form $\mathbf{v}^{T} \mathbf{A} \mathbf{v}$ if and only if all of the eigenvalues of \mathbf{A} are negative.

Hence, Theorem 3 can be restated as follows:
Given the conditions of Taylor's Theorem for a set A and a function $f: A \rightarrow \mathbb{R}$:
(1) if all of the eigenvalues of \mathbf{H} are positive at a critical point \mathbf{x}_{0}, then f has a local minimum at \mathbf{x}_{0}, and
(2) if all of the eigenvalues of \mathbf{H} are positive at a critical point \mathbf{x}_{0}, then f has a local minimum at \mathbf{x}_{0}.

Example 2 Consider the function

$$
f(x, y)=7 x^{2}+6 x y+2 x+7 y^{2}-22 y+23 .
$$

In Example 1, we found that f has a critical point at $\mathbf{x}_{0}=[-1,2]$. Now, the Hessian matrix for f at \mathbf{x}_{0} is

$$
\mathbf{H}=\left.\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right]\right|_{\mathbf{x}_{0}}=\left[\begin{array}{rr}
14 & 6 \\
6 & 14
\end{array}\right]
$$

But $p_{\mathbf{H}}(x)=x^{2}-28 x+160$, which has roots $x=8$ and $x=20$. Thus, \mathbf{H} has all eigenvalues positive, and hence, $\mathbf{v}^{T} \mathbf{H} \mathbf{v}$ is positive definite. Theorem 4 then tells us that $\mathbf{x}_{0}=[-1,2]$ is a local minimum for f.

- Local Maxima and Minima in \mathbb{R}^{2}

It can be shown (see Exercise 3) that a 2×2 symmetric matrix \mathbf{A} defines a positive definite quadratic form $\left(\mathbf{v}^{T} \mathbf{A} \mathbf{v}>0\right.$ for all nonzero $\left.\mathbf{v}\right)$ if and only if $a_{11}>0$ and $|\mathbf{A}|>0$. Similarly, a 2×2 symmetric matrix defines a negative definite quadratic form $\left(\mathbf{v}^{T} \mathbf{A} \mathbf{v}<0\right.$ for all nonzero $\left.\mathbf{v}\right)$ if and only if $a_{11}<0$ and $|\mathbf{A}|>0$.

Example 3 Suppose $f(x, y)=2 x^{2}-2 x^{2} y^{2}+2 y^{2}+24 y-x^{4}-y^{4}$. First, we look for critical points by solving the system

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x}=4 x-4 x y^{2}-4 x^{3}=4 x\left(1-\left(y^{2}+x^{2}\right)\right)=0 \\
\frac{\partial f}{\partial y}=-4 x^{2} y+4 y+24-4 y^{3}=-4 y\left(x^{2}+y^{2}\right)+4 y+24=0
\end{array}\right.
$$

Now $\frac{\partial f}{\partial x}=0$ yields $x=0$ or $y^{2}+x^{2}=1$. If $x=0$, then $\frac{\partial f}{\partial y}=0$ gives $4 y+24-4 y^{3}=0$. The unique real solution to this equation is $y=2$. Thus, $[0,2]$ is a critical point.

If $x \neq 0$, then $y^{2}+x^{2}=1$. From $\frac{\partial f}{\partial y}=0$, we have $0=-4 y(1)+4 y+24=24$, a contradiction, so there is no critical point when $x \neq 0$.

[^3]Next, we compute the Hessian matrix at the critical point [0, 2].

$$
\begin{aligned}
\mathbf{H} & =\left.\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right]\right|_{[0,2]} \\
& =\left.\left[\begin{array}{cc}
4-4 y^{2}-12 x^{2} & -8 x y \\
-8 x y & -4 x^{2}+4-12 y^{2}
\end{array}\right]\right|_{[0,2]}=\left[\begin{array}{rr}
-12 & 0 \\
0 & -44
\end{array}\right] .
\end{aligned}
$$

Since the $(1,1)$ entry is negative and $|\mathbf{H}|>0, \mathbf{H}$ defines a negative definite quadratic form and so f has a local maximum at $[0,2]$.

- An Example in \mathbb{R}^{3}

Example 4 Consider the function

$$
g(x, y, z)=5 x^{2}+2 x z+4 x y+10 x+3 z^{2}-6 y z-6 z+5 y^{2}+12 y+21
$$

We find the critical points by solving the system

$$
\left\{\begin{array}{l}
\frac{\partial g}{\partial x}=10 x+2 z+4 y+10=0 \\
\frac{\partial g}{\partial y}=4 x-6 z+10 y+12=0 \\
\frac{\partial g}{\partial z}=2 x+6 z-6 y-6=0
\end{array}\right.
$$

Using row reduction to solve this linear system yields the unique critical point $[-9,12,16]$. The Hessian matrix at $[-9,12,16]$ is

$$
\mathbf{H}=\left.\left[\begin{array}{ccc}
\frac{\partial^{2} g}{\partial x^{2}} & \frac{\partial^{2} g}{\partial x \partial y} & \frac{\partial^{2} g}{\partial x \partial z} \\
\frac{\partial^{2} g}{\partial y \partial x} & \frac{\partial^{2} g}{\partial y^{2}} & \frac{\partial^{2} g}{\partial y \partial z} \\
\frac{\partial^{2} g}{\partial z \partial x} & \frac{\partial^{2} g}{\partial z \partial y} & \frac{\partial^{2} g}{\partial z^{2}}
\end{array}\right]\right|_{[-9,12,16]}=\left[\begin{array}{rrr}
10 & 4 & 2 \\
4 & 10 & -6 \\
2 & -6 & 6
\end{array}\right] .
$$

A lengthy computation produces $p_{\mathbf{H}}(x)=x^{3}-26 x^{2}+164 x-8$. The roots of $p_{\mathbf{H}}(x)$ are approximately $0.04916,10.6011$, and 15.3497 . Since all of these eigenvalues for \mathbf{H} are positive, $[-9,12,16]$ is a local minimum for g.

- Failure of the Hessian Matrix Test

In calculus, we discovered that the second derivative test fails when the second derivative is zero at a critical point. A similar situation is true in \mathbb{R}^{n}. If the Hessian matrix at a critical point has 0 as an eigenvalue, and all other eigenvalues have the same sign, then the function f could have a local maximum, a local minimum, or neither at this critical point. Of course, if the Hessian matrix at a critical point has two eigenvalues with opposite signs, the critical point is not a local extreme point (why?). Exercise 2 illustrates these concepts.

- New Vocabulary

$C^{2}\left(\mathbb{R}^{n}\right)$ (functions from \mathbb{R}^{n} to \mathbb{R} having continuous second partial derivatives)
critical point (of a function)
gradient (of a function on \mathbb{R}^{n})
Hessian matrix
local maximum (of a function on \mathbb{R}^{n})
local minimum (of a function on \mathbb{R}^{n})
negative definite quadratic form

[^4]open hypersphere (in \mathbb{R}^{n})
positive definite quadratic form
Taylor's Theorem (in \mathbb{R}^{n})

- Highlights

- The gradient of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by $\nabla f=\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right]$.
- Let A be an open hypersphere about \mathbf{x}_{0}, and let f be a function on A with continuous partial derivatives. If f has a local maximum or minimum at \mathbf{x}_{0}, then $\nabla f\left(\mathbf{x}_{0}\right)=\mathbf{0}$.
- For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, its corresponding Hessian matrix \mathbf{H} is the $n \times n$ matrix whose (i, j) entry is $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$. In particular, for a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, the Hessian matrix $\mathbf{H}=\left[\begin{array}{cc}\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\ \frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}\end{array}\right]$.
- Taylor's Theorem in \mathbb{R}^{n} : Let A be an open hypersphere centered at $\mathbf{x}_{0} \in \mathbb{R}^{n}$, let \mathbf{u} be a unit vector in \mathbb{R}^{n}, and let $t \in \mathbb{R}$ such that $\mathbf{x}_{0}+t \mathbf{u} \in A$. Suppose $f: A \rightarrow \mathbb{R}$ has continuous second partial derivatives throughout A; that is, $f \in C^{2}(A)$. Then there is a c with $0 \leq c \leq t$ such that $f\left(\mathbf{x}_{0}+t \mathbf{u}\right)=f\left(\mathbf{x}_{0}\right)+$ $\left.\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\right|_{\mathbf{x}_{0}}\left(t u_{i}\right)+\left.\frac{1}{2} \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}\right|_{\mathbf{x}_{0}+c \mathbf{u}}\left(t^{2} u_{i}^{2}\right)+\left.\sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right|_{\mathbf{x}_{0}+c \mathbf{u}}\left(t^{2} u_{i} u_{j}\right)$. In particular, we have $f\left(\mathbf{x}_{0}+\mathbf{v}\right)=f\left(\mathbf{x}_{0}\right)+\left(\left.\nabla f\right|_{\mathbf{x}_{0}}\right) \cdot \mathbf{v}+\frac{1}{2} \mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}+k \mathbf{v}}\right) \mathbf{v}$, for some k with $0 \leq k \leq 1$.
- Let A be an open hypersphere centered at $\mathbf{x}_{0} \in \mathbb{R}^{n}$. If $f: A \rightarrow \mathbb{R}$ has continuous second partial derivatives throughout A, then $f: A \rightarrow \mathbb{R}, f$ has a local minimum at a critical point \mathbf{x}_{0} if $\mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}}\right) \mathbf{v}>0$ for all nonzero vectors \mathbf{v}. Similarly, f has a local maximum at a critical point \mathbf{x}_{0} if $\mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}}\right) \mathbf{v}<0$ for all nonzero vectors \mathbf{v}.
- A quadratic form is an expression of the form $\mathbf{v}^{T} \mathbf{A} \mathbf{v}$, where \mathbf{v} is a vector in \mathbb{R}^{n}, and \mathbf{A} is an $n \times n$ matrix. A positive definite quadratic form is one such that $\mathbf{v}^{T} \mathbf{A v}>0$ for all nonzero vectors \mathbf{v}. Similarly, a negative definite quadratic form is one such that $\mathbf{v}^{T} \mathbf{A v}<0$ for all nonzero vectors \mathbf{v}.
- For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ having Hessian matrix \mathbf{H}, if $\mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}}\right) \mathbf{v}$ is a positive definite quadratic form at a critical point \mathbf{x}_{0}, then f has a local minimum at \mathbf{x}_{0}. Similarly, if $\mathbf{v}^{T}\left(\left.\mathbf{H}\right|_{\mathbf{x}_{0}}\right) \mathbf{v}$ is a negative definite quadratic form at a critical point \mathbf{x}_{0}, then f has a local maximum at \mathbf{x}_{0}.
- A symmetric matrix \mathbf{A} defines a positive definite quadratic form $\mathbf{v}^{T} \mathbf{A v}$ if and only if all of the eigenvalues of \mathbf{A} are positive.
- A symmetric matrix \mathbf{A} defines a negative definite quadratic form $\mathbf{v}^{T} \mathbf{A v}$ if and only if all of the eigenvalues of \mathbf{A} are negative.
- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has Hessian matrix \mathbf{H}, and all eigenvalues of \mathbf{H} are positive at a critical point \mathbf{x}_{0}, then f has a local minimum at \mathbf{x}_{0}.
- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has Hessian matrix \mathbf{H}, and all eigenvalues of \mathbf{H} are negative at a critical point \mathbf{x}_{0}, then f has a local maximum at \mathbf{x}_{0}.

[^5]- A 2×2 symmetric matrix \mathbf{A} has a positive definite quadratic form $\mathbf{v}^{T} \mathbf{A v}$ if and only if $a_{11}>0$ and $|\mathbf{A}|>0$. Similarly, a 2×2 symmetric matrix has a negative definite quadratic form $\mathbf{v}^{T} \mathbf{A} \mathbf{v}$ if and only if $a_{11}<0$ and $|\mathbf{A}|>0$.

1. In each part, solve for all critical points for the given function. Then, for each critical point, use the Hessian matrix to determine whether the critical point is a local maximum, a local minimum, or neither.

ڤ a) $f(x, y)=x^{3}+x^{2}+2 x y-3 x+y^{2}$
b) $f(x, y)=6 x^{2}+4 x y+3 y^{2}+8 x-9 y$

* c) $f(x, y)=2 x^{2}+2 x y+2 x+y^{2}-2 y+5$
d) $f(x, y)=x^{3}+3 x^{2} y-x^{2}+3 x y^{2}+2 x y-3 x+y^{3}-y^{2}-3 y$ (Hint: To solve for critical points, first set $\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}=0$.)
\star e) $f(x, y, z)=2 x^{2}+2 x y+2 x z+y^{4}+4 y^{3} z+6 y^{2} z^{2}-y^{2}+4 y z^{3}-4 y z+z^{4}-z^{2}$
a) Show that $f(x, y)=(x-2)^{4}+(y-3)^{2}$ has a local minimum at $[2,3]$, but its Hessian matrix at $[2,3]$ has 0 as an eigenvalue.
b) Show that $f(x, y)=-(x-2)^{4}+(y-3)^{2}$ has a critical point at $[2,3]$, its Hessian matrix at $[2,3]$ has all nonnegative eigenvalues, but $[2,3]$ is not a local extreme point for f.
c) Show that $f(x, y)=-(x+1)^{4}-(y+2)^{4}$ has a local maximum at $[-1,-2]$, but its Hessian matrix at $[-1,-2]$ is \mathbf{O} and thus has all of its eigenvalues equal to zero.
d) Show that $f(x, y, z)=(x-1)^{2}-(y-2)^{2}+(z-3)^{4}$ does not have any local extreme points. Then verify that its Hessian matrix has eigenvalues of opposite sign at the function's only critical point.
a) Prove that a symmetric 2×2 matrix $\mathbf{A}=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$ defines a positive definite quadratic form if and only if $a>0$ and $|\mathbf{A}|>0$. (Hint: Compute $p_{\mathbf{A}}(x)$ and show that both roots are positive if and only if $a>0$ and $|\mathbf{A}|>0$.)
b) Prove that a symmetric 2×2 matrix \mathbf{A} defines a negative definite quadratic form if and only if $a_{11}<0$ and $|\mathbf{A}|>0$.

2. True or False:
a) If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has continuous second partial derivatives, then the Hessian matrix is symmetric.
b) Every symmetric matrix \mathbf{A} defines either a positive definite or a negative definite quadratic form.
c) A Hessian matrix for a function with continuous second partial derivatives evaluated at any point is diagonalizable.
d) $\mathbf{v}^{T}\left[\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right] \mathbf{v}$ is a positive definite quadratic form.
e) $\mathbf{v}^{T}\left[\begin{array}{rrr}3 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & 4\end{array}\right] \mathbf{v}$ is a positive definite quadratic form.
[^6]
- Answers to Selected Exercises

(1) (a) Critical points: $(1,-1),(-1,1)$; local minimum at $(1,-1)$
(c) Critical point: $(-2,3)$; local minimum at $(-2,3)$
(e) Critical points: $(0,0,0),\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right),\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$; local minimums at $\left(\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right),\left(-\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
(4) (a) T
(b) F
(c) T
(d) T
(e) F

[^0]: Andrilli/Hecker-Elementary Linear Algebra, 4th ed.-March 15, 2010

[^1]: Andrilli/Hecker—Elementary Linear Algebra, 4th ed.-March 15, 2010

[^2]: Andrilli/Hecker-Elementary Linear Algebra, 4th ed.-March 15, 2010

[^3]: Andrilli/Hecker-Elementary Linear Algebra, 4th ed.-March 15, 2010

[^4]: Andrilli/Hecker-Elementary Linear Algebra, 4th ed.-March 15, 2010

[^5]: Andrilli/Hecker-Elementary Linear Algebra, 4th ed.-March 15, 2010

[^6]: Andrilli/Hecker-Elementary Linear Algebra, 4th ed.-March 15, 2010

