Max-Min Problems in \mathbb{R}^n and the Hessian Matrix

Prerequisite: Section 6.3, Orthogonal Diagonalization

In this section, we study the problem of finding local maxima and minima for realvalued functions on \mathbb{R}^n . The method we describe is the higher-dimensional analogue to finding critical points and applying the second derivative test to functions on \mathbb{R} studied in first-semester calculus.

• Taylor's Theorem in \mathbb{R}^n

Let $f \in C^2(\mathbb{R}^n)$, where $C^2(\mathbb{R}^n)$ is the set of real-valued functions defined on \mathbb{R}^n having continuous second partial derivatives. The method for solving for local extreme points of f relies upon Taylor's Theorem with second degree remainder terms, which we state here without proof. (In the following theorem, an **open hypersphere** centered at \mathbf{x}_0 is a set of the form $\{\mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x} - \mathbf{x}_0|| < r\}$ for some positive real number r.)

THEOREM 1

(Taylor's Theorem in \mathbb{R}^n) Let A be an open hypersphere centered at $\mathbf{x}_0 \in \mathbb{R}^n$, let \mathbf{u} be a unit vector in \mathbb{R}^n , and let $t \in \mathbb{R}$ such that $\mathbf{x}_0 + t\mathbf{u} \in A$. Suppose $f : A \to \mathbb{R}$ has continuous second partial derivatives throughout A; that is, $f \in C^2(A)$. Then there is a c with $0 \le c \le t$ such that

$$f(\mathbf{x}_{0} + t\mathbf{u}) = f(\mathbf{x}_{0}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \Big|_{\mathbf{x}_{0}} (tu_{i}) + \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}} \Big|_{\mathbf{x}_{0} + c\mathbf{u}} (t^{2}u_{i}^{2})$$
$$+ \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \Big|_{\mathbf{x}_{0} + c\mathbf{u}} (t^{2}u_{i}u_{j}).$$

Taylor's Theorem in \mathbb{R}^n is derived from the familiar Taylor's Theorem in \mathbb{R} by applying it to the function $g(t) = f(\mathbf{x}_0 + t\mathbf{u})$. In \mathbb{R}^2 , the formula in Taylor's Theorem is

$$f(\mathbf{x}_{0} + t\mathbf{u}) = f(\mathbf{x}_{0}) + \frac{\partial f}{\partial x}\Big|_{\mathbf{x}_{0}} (tu_{1}) + \frac{\partial f}{\partial y}\Big|_{\mathbf{x}_{0}} (tu_{2}) + \frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}\Big|_{\mathbf{x}_{0} + c\mathbf{u}} (t^{2}u_{1}^{2}) + \frac{1}{2} \frac{\partial^{2} f}{\partial y^{2}}\Big|_{\mathbf{x}_{0} + c\mathbf{u}} (t^{2}u_{2}^{2}) + \frac{\partial^{2} f}{\partial x \partial y}\Big|_{\mathbf{x}_{0} + c\mathbf{u}} (t^{2}u_{1}u_{2}).$$

Recall that the **gradient** of f is defined by $\nabla f = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right]$. If we let $\mathbf{v} = t\mathbf{u}$, then, in \mathbb{R}^2 , $\mathbf{v} = [v_1, v_2] = [tu_1, tu_2]$, and so the sum $\left.\frac{\partial f}{\partial x}\right|_{\mathbf{x}_0}(tu_1) + \left.\frac{\partial f}{\partial y}\right|_{\mathbf{x}_0}(tu_2)$ simplifies to $\left(\left.\nabla f\right|_{\mathbf{x}_0}\right) \cdot \mathbf{v}$. Also, since f has continuous second partial

derivatives, we have $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$. Therefore,

$$\begin{split} &\frac{1}{2}\frac{\partial^2 f}{\partial x^2}(t^2 u_1^2) + \frac{1}{2}\frac{\partial^2 f}{\partial y^2}(t^2 u_2^2) + \frac{\partial^2 f}{\partial x \partial y}(t^2 u_1 u_2) \\ &= \frac{1}{2}v_1 \left(\frac{\partial^2 f}{\partial x^2}v_1 + \frac{\partial^2 f}{\partial x \partial y}v_2\right) + \frac{1}{2}v_2 \left(\frac{\partial^2 f}{\partial y \partial x}v_1 + \frac{\partial^2 f}{\partial y^2}v_2\right) \\ &= \frac{1}{2}\mathbf{v}^T \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix} \mathbf{v}, \end{split}$$

where \mathbf{v} is considered to be a column vector. The matrix

$$\mathbf{H} = \left[egin{array}{ccc} rac{\partial^2 f}{\partial x^2} & rac{\partial^2 f}{\partial x \partial y} \ rac{\partial^2 f}{\partial y \partial x} & rac{\partial^2 f}{\partial y^2} \end{array}
ight]$$

in this expression is called the **Hessian matrix** for f. Thus, in the \mathbb{R}^2 case, with $\mathbf{v} = t\mathbf{u}$, the formula in Taylor's Theorem can be written as

$$f(\mathbf{x}_0 + \mathbf{v}) = f(\mathbf{x}_0) + \left(\nabla f \Big|_{\mathbf{x}_0} \right) \cdot \mathbf{v} + \frac{1}{2} \mathbf{v}^T \left(\mathbf{H} \Big|_{\mathbf{x}_0 + k\mathbf{v}} \right) \mathbf{v},$$

for some k with $0 \le k \le 1$ (where $k = \frac{c}{t}$). While we have derived this result in \mathbb{R}^2 , the same formula holds in \mathbb{R}^n , where the Hessian **H** is the matrix whose (i, j) entry is $\frac{\partial^2 f}{\partial x_i \partial x_j}$.

Critical Points

If A is a subset of \mathbb{R}^n , then we say that $f : A \to \mathbb{R}$ has a **local maximum** at a point $\mathbf{x}_0 \in A$ if and only if there is an open neighborhood \mathcal{U} of \mathbf{x}_0 such that $f(\mathbf{x}_0) \ge f(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{U}$. A **local minimum** for a function f is defined analogously.

THEOREM 2

Let A be an open hypersphere centered at $\mathbf{x}_0 \in \mathbb{R}^n$, and let $f : A \to \mathbb{R}$ have continuous first partial derivatives on A. If f has a local maximum or a local minimum at \mathbf{x}_0 , then $\nabla f(\mathbf{x}_0) = \mathbf{0}$.

Proof If \mathbf{x}_0 is a local maximum, then $f(\mathbf{x}_0 + h\mathbf{e}_i) - f(\mathbf{x}_0) \leq 0$ for small h. Then, $\lim_{h\to 0^+} \frac{f(\mathbf{x}_0 + h\mathbf{e}_i) - f(\mathbf{x}_0)}{h} \leq 0$. Similarly, $\lim_{h\to 0^-} \frac{f(\mathbf{x}_0 + h\mathbf{e}_i) - f(\mathbf{x}_0)}{h} \geq 0$. Hence, for the limit to exist, we must have $\frac{\partial f}{\partial x_i}\Big|_{\mathbf{x}_0} = 0$. Since this is true for each i, $\nabla f\Big|_{\mathbf{x}_0} = \mathbf{0}$. A similar proof works for local minimums.

Points \mathbf{x}_0 at which $\nabla f(\mathbf{x}_0) = \mathbf{0}$ are called **critical points**.

EXAMPLE 1 Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = 7x^{2} + 6xy + 2x + 7y^{2} - 22y + 23.$$

Then $\nabla f = [14x + 6y + 2, 6x + 14y - 22]$. We find critical points for f by solving $\nabla f = \mathbf{0}$. This is the linear system

$$\begin{cases} 14x + 6y + 2 = 0\\ 6x + 14y - 22 = 0 \end{cases},$$

which has the unique solution $\mathbf{x}_0 = [-1, 2]$. Hence, by Theorem 2, (-1, 2) is the only possible extreme point for f. (We will see later that (-1, 2) is a local minimum.)

.

ANDRILLI/HECKER-ELEMENTARY LINEAR ALGEBRA, 4TH ED.-MARCH 15, 2010

Sufficient Conditions for Local Extreme Points

If \mathbf{x}_0 is a critical point for a function f, how can we determine whether \mathbf{x}_0 is a local maximum or a local minimum? For functions on \mathbb{R} , we have the second derivative test from calculus, which says that if $f''(\mathbf{x}_0) < 0$, then \mathbf{x}_0 is a local maximum, but if $f''(\mathbf{x}_0) > 0$, then \mathbf{x}_0 is a local minimum. We now derive a similar test in \mathbb{R}^n .

Consider the following formula from Taylor's Theorem:

$$f(\mathbf{x}_0 + \mathbf{v}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \cdot \mathbf{v} + \frac{1}{2} \mathbf{v}^T \left(\mathbf{H} \Big|_{\mathbf{x}_0 + k\mathbf{v}} \right) \mathbf{v}.$$

At a critical point, $\nabla f(\mathbf{x}_0) = \mathbf{0}$, and so

$$f(\mathbf{x}_0 + \mathbf{v}) = f(\mathbf{x}_0) + \frac{1}{2}\mathbf{v}^T \left(\mathbf{H}\Big|_{\mathbf{x}_0 + k\mathbf{v}}\right)\mathbf{v}.$$

Hence, if $\mathbf{v}^T \left(\mathbf{H} \Big|_{\mathbf{x}_0 + k\mathbf{v}} \right) \mathbf{v}$ is positive for all small nonzero vectors \mathbf{v} , then f will have a local minimum at \mathbf{x}_0 . (Similarly, if $\mathbf{v}^T \left(\mathbf{H} \Big|_{\mathbf{x}_0 + k\mathbf{v}} \right) \mathbf{v}$ is negative, f will have a local maximum.) But since we assume that f has continuous second partial derivatives, $\mathbf{v}^T \left(\mathbf{H} \Big|_{\mathbf{x}_0 + k\mathbf{v}} \right) \mathbf{v}$ is continuous in \mathbf{v} and k, and will be positive for small \mathbf{v} if $\mathbf{v}^T \left(\mathbf{H} \Big|_{\mathbf{x}_0} \right) \mathbf{v}$ is positive for all nonzero \mathbf{v} . Hence,

THEOREM 3

Given the conditions of Taylor's Theorem for a set A and a function $f : A \to \mathbb{R}$, f has a local minimum at a critical point \mathbf{x}_0 if $\mathbf{v}^T \left(\mathbf{H} \Big|_{\mathbf{x}_0} \right) \mathbf{v} > 0$ for all nonzero vectors \mathbf{v} . Similarly, f has a local maximum at a critical point \mathbf{x}_0 if $\mathbf{v}^T \left(\mathbf{H} \Big|_{\mathbf{x}_0} \right) \mathbf{v} < 0$ for all nonzero vectors \mathbf{v} .

Positive Definite Quadratic Forms

If \mathbf{v} is a vector in \mathbb{R}^n , and \mathbf{A} is an $n \times n$ matrix, the expression $\mathbf{v}^T \mathbf{A} \mathbf{v}$ is known as a **quadratic form**. (For more details on the general theory of quadratic forms, see Section 8.11.) A quadratic form such that $\mathbf{v}^T \mathbf{A} \mathbf{v} > 0$ for all nonzero vectors \mathbf{v} is said to be **positive definite**. Similarly, a quadratic form such that $\mathbf{v}^T \mathbf{A} \mathbf{v} < 0$ for all nonzero vectors \mathbf{v} is said to be **negative definite**.

Now, in particular, the expression $\mathbf{v}^T \left(\mathbf{H} \Big|_{\mathbf{x}_0} \right) \mathbf{v}$ in Theorem 3 is a quadratic form. Theorem 3 then says that if $\mathbf{v}^T \left(\mathbf{H} \Big|_{\mathbf{x}_0} \right) \mathbf{v}$ is a positive definite quadratic form at a critical point \mathbf{x}_0 , then f has a local minimum at \mathbf{x}_0 . Theorem 3 also says that if $\mathbf{v}^T \left(\mathbf{H} \Big|_{\mathbf{x}_0} \right) \mathbf{v}$ is a negative definite quadratic form at a critical point \mathbf{x}_0 , then f has a local maximum at \mathbf{x}_0 . Therefore, we need a method to determine whether a quadratic form of this type is positive definite or negative definite.

Now, the Hessian matrix $(\mathbf{H}|_{\mathbf{x}_0})$, which we will abbreviate as \mathbf{H} , is symmetric because $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$ (since $f \in C^2(A)$). Hence, by Theorem 6.20, \mathbf{H} can be orthogonally diagonalized. That is, there is an orthogonal matrix \mathbf{P} such that $\mathbf{P}\mathbf{H}\mathbf{P}^T = \mathbf{D}$, a diagonal matrix, and so, $\mathbf{H} = \mathbf{P}^T\mathbf{D}\mathbf{P}$. Hence, $\mathbf{v}^T\mathbf{H}\mathbf{v} = \mathbf{v}^T\mathbf{P}^T\mathbf{D}\mathbf{P}\mathbf{v} = (\mathbf{P}\mathbf{v})^T\mathbf{D}(\mathbf{P}\mathbf{v})$. Letting $\mathbf{w} = \mathbf{P}\mathbf{v}$, we get $\mathbf{v}^T\mathbf{H}\mathbf{v} = \mathbf{w}^T\mathbf{D}\mathbf{w}$. But \mathbf{P} is nonsingular, so as \mathbf{v} ranges over all of \mathbb{R}^n , so does \mathbf{w} , and vice-versa. Thus,

ANDRILLI/HECKER-ELEMENTARY LINEAR ALGEBRA, 4TH ED.-MARCH 15, 2010

4

 $\mathbf{v}^T \mathbf{H} \mathbf{v} > 0$ for all nonzero \mathbf{v} if and only if $\mathbf{w}^T \mathbf{D} \mathbf{w} > 0$ for all nonzero \mathbf{w} . Now, \mathbf{D} is diagonal, and so $\mathbf{w}^T \mathbf{D} \mathbf{w} = d_{11}w_1^2 + d_{22}w_2^2 + \cdots + d_{nn}w_n^2$. But the d_{ii} 's are the eigenvalues of **H**. Thus, it follows that $\mathbf{w}^T \mathbf{D} \mathbf{w} > 0$ for all nonzero **w** if and only if all of these eigenvalues are positive. (Set $\mathbf{w} = \mathbf{e}_i$ for each *i* to prove the "only if" part of this statement.) Similarly, $\mathbf{w}^T \mathbf{D} \mathbf{w} < 0$ for all nonzero \mathbf{w} if and only if all of these eigenvalues are negative. Hence,

THEOREM 4

A symmetric matrix **A** defines a positive definite quadratic form $\mathbf{v}^T \mathbf{A} \mathbf{v}$ if and only if all of the eigenvalues of **A** are positive. A symmetric matrix **A** defines a negative definite quadratic form $\mathbf{v}^T \mathbf{A} \mathbf{v}$ if and only if all of the eigenvalues of \mathbf{A} are negative.

Hence, Theorem 3 can be restated as follows:

Given the conditions of Taylor's Theorem for a set A and a function $f: A \to \mathbb{R}$: (1) if all of the eigenvalues of **H** are positive at a critical point \mathbf{x}_0 , then f has a local minimum at \mathbf{x}_0 , and

(2) if all of the eigenvalues of **H** are positive at a critical point \mathbf{x}_0 , then f has a local minimum at \mathbf{x}_0 .

EXAMPLE 2 Consider the function

$$f(x,y) = 7x^{2} + 6xy + 2x + 7y^{2} - 22y + 23.$$

In Example 1, we found that f has a critical point at $\mathbf{x}_0 = [-1, 2]$. Now, the Hessian matrix for f at \mathbf{x}_0 is

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix} \Big|_{\mathbf{x}_0} = \begin{bmatrix} 14 & 6 \\ 6 & 14 \end{bmatrix}.$$

But $p_{\mathbf{H}}(x) = x^2 - 28x + 160$, which has roots x = 8 and x = 20. Thus, **H** has all eigenvalues positive, and hence, $\mathbf{v}^T \mathbf{H} \mathbf{v}$ is positive definite. Theorem 4 then tells us that $\mathbf{x}_0 = [-1, 2]$ is a local minimum for f.

Local Maxima and Minima in \mathbb{R}^2

It can be shown (see Exercise 3) that a 2×2 symmetric matrix A defines a positive definite quadratic form ($\mathbf{v}^T \mathbf{A} \mathbf{v} > 0$ for all nonzero \mathbf{v}) if and only if $a_{11} > 0$ and $|\mathbf{A}| > 0$. Similarly, a 2 × 2 symmetric matrix defines a negative definite quadratic form $(\mathbf{v}^T \mathbf{A} \mathbf{v} < 0$ for all nonzero $\mathbf{v})$ if and only if $a_{11} < 0$ and $|\mathbf{A}| > 0$.

Suppose $f(x, y) = 2x^2 - 2x^2y^2 + 2y^2 + 24y - x^4 - y^4$. First, we look for critical EXAMPLE 3 points by solving the system

$$\begin{pmatrix} \frac{\partial f}{\partial x} = 4x - 4xy^2 - 4x^3 = 4x(1 - (y^2 + x^2)) = 0\\ \frac{\partial f}{\partial y} = -4x^2y + 4y + 24 - 4y^3 = -4y(x^2 + y^2) + 4y + 24 = 0 \end{cases}$$

Now $\frac{\partial f}{\partial x} = 0$ yields x = 0 or $y^2 + x^2 = 1$. If x = 0, then $\frac{\partial f}{\partial y} = 0$ gives $4y + 24 - 4y^3 = 0$. The unique real solution to this equation is y = 2. Thus, [0, 2] is a critical point. If $x \neq 0$, then $y^2 + x^2 = 1$. From $\frac{\partial f}{\partial y} = 0$, we have 0 = -4y(1) + 4y + 24 = 24, a contradiction so there is no critical point when y = 0.

a contradiction, so there is no critical point when $x \neq 0$.

ANDRILLI/HECKER-ELEMENTARY LINEAR ALGEBRA, 4TH ED.-MARCH 15, 2010

Next, we compute the Hessian matrix at the critical point [0, 2].

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix} \Big|_{[\mathbf{0}, \mathbf{2}]}$$
$$= \begin{bmatrix} 4 - 4y^2 - 12x^2 & -8xy \\ -8xy & -4x^2 + 4 - 12y^2 \end{bmatrix} \Big|_{[\mathbf{0}, \mathbf{2}]} = \begin{bmatrix} -12 & 0 \\ 0 & -44 \end{bmatrix}$$

Since the (1, 1) entry is negative and $|\mathbf{H}| > 0$, \mathbf{H} defines a negative definite quadratic form and so f has a local maximum at [0, 2].

• An Example in \mathbb{R}^3

EXAMPLE 4 Consider the function

$$g(x, y, z) = 5x^{2} + 2xz + 4xy + 10x + 3z^{2} - 6yz - 6z + 5y^{2} + 12y + 21.$$

We find the critical points by solving the system

$$\begin{cases} \frac{\partial g}{\partial x} = 10x + 2z + 4y + 10 = 0\\ \frac{\partial g}{\partial y} = 4x - 6z + 10y + 12 = 0\\ \frac{\partial g}{\partial z} = 2x + 6z - 6y - 6 = 0 \end{cases}$$

Using row reduction to solve this linear system yields the unique critical point [-9, 12, 16]. The Hessian matrix at [-9, 12, 16] is

$$\mathbf{H} = \begin{bmatrix} \frac{\partial^2 g}{\partial x^2} & \frac{\partial^2 g}{\partial x \partial y} & \frac{\partial^2 g}{\partial x \partial z} \\ \frac{\partial^2 g}{\partial y \partial x} & \frac{\partial^2 g}{\partial y^2} & \frac{\partial^2 g}{\partial y \partial z} \\ \frac{\partial^2 g}{\partial z \partial x} & \frac{\partial^2 g}{\partial z \partial y} & \frac{\partial^2 g}{\partial z^2} \end{bmatrix} \Big|_{[-9,12,16]} = \begin{bmatrix} 10 & 4 & 2 \\ 4 & 10 & -6 \\ 2 & -6 & 6 \end{bmatrix}$$

A lengthy computation produces $p_{\mathbf{H}}(x) = x^3 - 26x^2 + 164x - 8$. The roots of $p_{\mathbf{H}}(x)$ are approximately 0.04916, 10.6011, and 15.3497. Since all of these eigenvalues for **H** are positive, [-9, 12, 16] is a local minimum for g.

Failure of the Hessian Matrix Test

In calculus, we discovered that the second derivative test fails when the second derivative is zero at a critical point. A similar situation is true in \mathbb{R}^n . If the Hessian matrix at a critical point has 0 as an eigenvalue, and all other eigenvalues have the same sign, then the function f could have a local maximum, a local minimum, or neither at this critical point. Of course, if the Hessian matrix at a critical point has two eigenvalues with opposite signs, the critical point is not a local extreme point (why?). Exercise 2 illustrates these concepts.

New Vocabulary

 $C^2(\mathbb{R}^n)$ (functions from \mathbb{R}^n to \mathbb{R} having continuous second partial derivatives) critical point (of a function) gradient (of a function on \mathbb{R}^n) Hessian matrix local maximum (of a function on \mathbb{R}^n) local minimum (of a function on \mathbb{R}^n) negative definite quadratic form

ANDRILLI/HECKER-ELEMENTARY LINEAR ALGEBRA, 4TH ED.-MARCH 15, 2010

6

open hypersphere (in \mathbb{R}^n) positive definite quadratic form Taylor's Theorem (in \mathbb{R}^n)

- Highlights
- The gradient of a function $f : \mathbb{R}^n \to \mathbb{R}$ is defined by $\nabla f = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right]$.
- Let A be an open hypersphere about \mathbf{x}_0 , and let f be a function on A with continuous partial derivatives. If f has a local maximum or minimum at \mathbf{x}_0 , then $\nabla f(\mathbf{x}_0) = \mathbf{0}$.
- For a function $f : \mathbb{R}^n \to \mathbb{R}$, its corresponding Hessian matrix **H** is the $n \times n$ matrix whose (i, j) entry is $\frac{\partial^2 f}{\partial x_i \partial x_j}$. In particular, for a function $f : \mathbb{R}^2 \to \mathbb{R}$, the Hessian matrix $\mathbf{H} = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{bmatrix}$.
- Taylor's Theorem in \mathbb{R}^n : Let A be an open hypersphere centered at $\mathbf{x}_0 \in \mathbb{R}^n$, let \mathbf{u} be a unit vector in \mathbb{R}^n , and let $t \in \mathbb{R}$ such that $\mathbf{x}_0 + t\mathbf{u} \in A$. Suppose $f: A \to \mathbb{R}$ has continuous second partial derivatives throughout A; that is, $f \in C^2(A)$. Then there is a c with $0 \le c \le t$ such that $f(\mathbf{x}_0 + t\mathbf{u}) = f(\mathbf{x}_0) + \sum_{i=1}^n \frac{\partial f}{\partial x_i}\Big|_{\mathbf{x}_0} (tu_i) + \frac{1}{2} \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2}\Big|_{\mathbf{x}_0 + c\mathbf{u}} (t^2u_i^2) + \sum_{i=1}^n \sum_{j=i+1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}\Big|_{\mathbf{x}_0 + c\mathbf{u}} (t^2u_iu_j)$. In particular, we have $f(\mathbf{x}_0 + \mathbf{v}) = f(\mathbf{x}_0) + \left(\nabla f \Big|_{\mathbf{x}_0} \right) \cdot \mathbf{v} + \frac{1}{2} \mathbf{v}^T \left(\mathbf{H} \Big|_{\mathbf{x}_0 + k\mathbf{v}} \right) \mathbf{v}$, for some k with $0 \le k \le 1$.
- Let A be an open hypersphere centered at $\mathbf{x}_0 \in \mathbb{R}^n$. If $f : A \to \mathbb{R}$ has continuous second partial derivatives throughout A, then $f : A \to \mathbb{R}$, f has a local minimum at a critical point \mathbf{x}_0 if $\mathbf{v}^T \left(\mathbf{H} \Big|_{\mathbf{x}_0} \right) \mathbf{v} > 0$ for all nonzero vectors \mathbf{v} . Similarly, f has a local maximum at a critical point \mathbf{x}_0 if $\mathbf{v}^T \left(\mathbf{H} \Big|_{\mathbf{x}_0} \right) \mathbf{v} < 0$ for all nonzero vectors \mathbf{v} .
- A quadratic form is an expression of the form $\mathbf{v}^T \mathbf{A} \mathbf{v}$, where \mathbf{v} is a vector in \mathbb{R}^n , and \mathbf{A} is an $n \times n$ matrix. A positive definite quadratic form is one such that $\mathbf{v}^T \mathbf{A} \mathbf{v} > 0$ for all nonzero vectors \mathbf{v} . Similarly, a negative definite quadratic form is one such that $\mathbf{v}^T \mathbf{A} \mathbf{v} < 0$ for all nonzero vectors \mathbf{v} .
- For a function $f : \mathbb{R}^n \to \mathbb{R}$ having Hessian matrix \mathbf{H} , if $\mathbf{v}^T \left(\mathbf{H} \Big|_{\mathbf{x}_0} \right) \mathbf{v}$ is a positive definite quadratic form at a critical point \mathbf{x}_0 , then f has a local minimum at \mathbf{x}_0 . Similarly, if $\mathbf{v}^T \left(\mathbf{H} \Big|_{\mathbf{x}_0} \right) \mathbf{v}$ is a negative definite quadratic form at a critical point \mathbf{x}_0 , then f has a local maximum at \mathbf{x}_0 .
- A symmetric matrix \mathbf{A} defines a positive definite quadratic form $\mathbf{v}^T \mathbf{A} \mathbf{v}$ if and only if all of the eigenvalues of \mathbf{A} are positive.
- A symmetric matrix \mathbf{A} defines a negative definite quadratic form $\mathbf{v}^T \mathbf{A} \mathbf{v}$ if and only if all of the eigenvalues of \mathbf{A} are negative.
- If $f : \mathbb{R}^n \to \mathbb{R}$ has Hessian matrix **H**, and all eigenvalues of **H** are positive at a critical point \mathbf{x}_0 , then f has a local minimum at \mathbf{x}_0 .
- If $f : \mathbb{R}^n \to \mathbb{R}$ has Hessian matrix **H**, and all eigenvalues of **H** are negative at a critical point \mathbf{x}_0 , then f has a local maximum at \mathbf{x}_0 .

ANDRILLI/HECKER-ELEMENTARY LINEAR ALGEBRA, 4TH ED.-MARCH 15, 2010

• A 2 × 2 symmetric matrix **A** has a positive definite quadratic form $\mathbf{v}^T \mathbf{A} \mathbf{v}$ if and only if $a_{11} > 0$ and $|\mathbf{A}| > 0$. Similarly, a 2 × 2 symmetric matrix has a negative definite quadratic form $\mathbf{v}^T \mathbf{A} \mathbf{v}$ if and only if $a_{11} < 0$ and $|\mathbf{A}| > 0$.

EXERCISES

- 1. In each part, solve for all critical points for the given function. Then, for each critical point, use the Hessian matrix to determine whether the critical point is a local maximum, a local minimum, or neither.
 - ★ a) $f(x,y) = x^3 + x^2 + 2xy 3x + y^2$ b) $f(x,y) = 6x^2 + 4xy + 3y^2 + 8x - 9y$
 - ★ c) $f(x,y) = 2x^2 + 2xy + 2x + y^2 2y + 5$
 - **d)** $f(x,y) = x^3 + 3x^2y x^2 + 3xy^2 + 2xy 3x + y^3 y^2 3y$ (Hint: To solve for critical points, first set $\frac{\partial f}{\partial x} \frac{\partial f}{\partial y} = 0.$)
- $\bigstar \quad \textbf{e)} \quad f(x,y,z) = 2x^2 + 2xy + 2xz + y^4 + 4y^3z + 6y^2z^2 y^2 + 4yz^3 4yz + z^4 z^2 + 2y^2 + y^2 + y$
 - a) Show that $f(x,y) = (x-2)^4 + (y-3)^2$ has a local minimum at [2,3], but its Hessian matrix at [2,3] has 0 as an eigenvalue.
 - **b)** Show that $f(x, y) = -(x-2)^4 + (y-3)^2$ has a critical point at [2,3], its Hessian matrix at [2,3] has all nonnegative eigenvalues, but [2,3] is not a local extreme point for f.
 - c) Show that $f(x, y) = -(x+1)^4 (y+2)^4$ has a local maximum at [-1, -2], but its Hessian matrix at [-1, -2] is **O** and thus has all of its eigenvalues equal to zero.
 - d) Show that $f(x, y, z) = (x-1)^2 (y-2)^2 + (z-3)^4$ does not have any local extreme points. Then verify that its Hessian matrix has eigenvalues of opposite sign at the function's only critical point.
 - a) Prove that a symmetric 2×2 matrix $\mathbf{A} = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$ defines a positive definite quadratic form if and only if a > 0 and $|\mathbf{A}| > 0$. (Hint: Compute $p_{\mathbf{A}}(x)$ and show that both roots are positive if and only if a > 0 and $|\mathbf{A}| > 0$.)
 - **b)** Prove that a symmetric 2×2 matrix **A** defines a negative definite quadratic form if and only if $a_{11} < 0$ and $|\mathbf{A}| > 0$.
- \bigstar 2. True or False:
 - a) If $f : \mathbb{R}^n \to \mathbb{R}$ has continuous second partial derivatives, then the Hessian matrix is symmetric.
 - **b)** Every symmetric matrix **A** defines either a positive definite or a negative definite quadratic form.
 - c) A Hessian matrix for a function with continuous second partial derivatives evaluated at any point is diagonalizable.
 - **d)** $\mathbf{v}^T \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix} \mathbf{v}$ is a positive definite quadratic form. **e)** $\mathbf{v}^T \begin{bmatrix} 3 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & 4 \end{bmatrix} \mathbf{v}$ is a positive definite quadratic form.

ANDRILLI/HECKER-ELEMENTARY LINEAR ALGEBRA, 4TH ED.-MARCH 15, 2010

Answers to Selected Exercises

- (1) (a) Critical points: (1, -1), (-1, 1); local minimum at (1, -1)
 - (c) Critical point: (-2,3); local minimum at (-2,3)
 - (e) Critical points: (0,0,0), $(\frac{1}{2},-\frac{1}{2},-\frac{1}{2})$, $(-\frac{1}{2},\frac{1}{2},\frac{1}{2})$; local minimums at $(\frac{1}{2},-\frac{1}{2},-\frac{1}{2})$, $(-\frac{1}{2},\frac{1}{2},\frac{1}{2})$
- (4) (a) T
 - (b) F
 - (c) T
 - (d) T
 - (e) F

ANDRILLI/HECKER-ELEMENTARY LINEAR ALGEBRA, 4TH ED.-MARCH 15, 2010