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Max-Min Problems in Rn and the Hessian
Matrix
Prerequisite: Section 6.3, Orthogonal Diagonalization
In this section, we study the problem of �nding local maxima and minima for real-
valued functions on Rn. The method we describe is the higher-dimensional analogue
to �nding critical points and applying the second derivative test to functions on R
studied in �rst-semester calculus.

I Taylor�s Theorem in Rn
Let f 2 C2(Rn), where C2(Rn) is the set of real-valued functions de�ned on Rn
having continuous second partial derivatives. The method for solving for local
extreme points of f relies upon Taylor�s Theorem with second degree remainder
terms, which we state here without proof. (In the following theorem, an open
hypersphere centered at x0 is a set of the form fx 2 Rn j kx� x0k < rg for some
positive real number r.)

THEOREM 1
(Taylor�s Theorem in Rn) Let A be an open hypersphere centered at x0 2 Rn,
let u be a unit vector in Rn, and let t 2 R such that x0 + tu 2 A. Suppose
f : A ! R has continuous second partial derivatives throughout A; that is,
f 2 C2(A). Then there is a c with 0 � c � t such that

f(x0 + tu) = f(x0) +
nX
i=1

@f

@xi

����
x0

(tui) +
1

2

nX
i=1

@2f

@x2i

����
x0+cu

(t2u2i )

+
nX
i=1

nX
j=i+1

@2f

@xi@xj

����
x0+cu

(t2uiuj):

Taylor�s Theorem in Rn is derived from the familiar Taylor�s Theorem in R
by applying it to the function g(t) = f(x0 + tu). In R2, the formula in Taylor�s
Theorem is

f(x0 + tu) = f(x0) +
@f

@x

����
x0

(tu1) +
@f

@y

����
x0

(tu2)

+
1

2

@2f

@x2

����
x0+cu

(t2u21) +
1

2

@2f

@y2

����
x0+cu

(t2u22)

+
@2f

@x@y

����
x0+cu

(t2u1u2):

Recall that the gradient of f is de�ned by rf =
h
@f
@x1
; @f@x2 ; : : : ;

@f
@xn

i
. If we

let v = tu, then, in R2, v = [v1; v2] = [tu1; tu2], and so the sum
@f
@x

���
x0
(tu1) +

@f
@y

���
x0
(tu2) simpli�es to

�
rf
���
x0

�
� v. Also, since f has continuous second partial
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derivatives, we have @2f
@x@y =

@2f
@y@x : Therefore,

1

2

@2f

@x2
(t2u21) +

1

2

@2f

@y2
(t2u22) +

@2f

@x@y
(t2u1u2)

=
1

2
v1

�
@2f

@x2
v1 +

@2f

@x@y
v2

�
+
1

2
v2

�
@2f

@y@x
v1 +

@2f

@y2
v2

�

=
1

2
vT

24 @2f
@x2

@2f
@x@y

@2f
@y@x

@2f
@y2

35v;
where v is considered to be a column vector. The matrix

H =

24 @2f
@x2

@2f
@x@y

@2f
@y@x

@2f
@y2

35
in this expression is called the Hessian matrix for f . Thus, in the R2 case, with
v = tu, the formula in Taylor�s Theorem can be written as

f(x0 + v) = f(x0) +

�
rf
���
x0

�
� v +

1

2
vT
�
H
���
x0+kv

�
v,

for some k with 0 � k � 1 (where k = c
t ). While we have derived this result in R

2,
the same formula holds in Rn, where the Hessian H is the matrix whose (i; j) entry
is @2f

@xi@xj
.

I Critical Points
If A is a subset of Rn, then we say that f : A! R has a local maximum at a point
x0 2 A if and only if there is an open neighborhood U of x0 such that f(x0) � f(x)
for all x 2 U . A local minimum for a function f is de�ned analogously.

THEOREM 2
Let A be an open hypersphere centered at x0 2 Rn, and let f : A ! R have
continuous �rst partial derivatives on A. If f has a local maximum or a local
minimum at x0, then rf(x0) = 0.

Proof If x0 is a local maximum, then f(x0+hei)�f(x0) � 0 for small h. Then,
limh!0+

f(x0+hei)�f(x0)
h � 0. Similarly, limh!0�

f(x0+hei)�f(x0)
h � 0. Hence, for

the limit to exist, we must have @f
@xi

���
x0
= 0. Since this is true for each i, rf

���
x0
= 0.

A similar proof works for local minimums. QED

Points x0 at which rf(x0) = 0 are called critical points.

Example 1 Let f : R2 ! R be given by

f(x; y) = 7x2 + 6xy + 2x+ 7y2 � 22y + 23.

Then rf = [14x+ 6y + 2; 6x+ 14y � 22]. We �nd critical points for f by solving
rf = 0. This is the linear system�

14x + 6y + 2 = 0

6x + 14y � 22 = 0
;

which has the unique solution x0 = [�1; 2]. Hence, by Theorem 2, (�1; 2) is
the only possible extreme point for f . (We will see later that (�1; 2) is a local
minimum.) �
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I Su¢ cient Conditions for Local Extreme Points
If x0 is a critical point for a function f , how can we determine whether x0 is a local
maximum or a local minimum? For functions on R, we have the second derivative
test from calculus, which says that if f 00(x0) < 0, then x0 is a local maximum, but
if f 00(x0) > 0, then x0 is a local minimum. We now derive a similar test in Rn.
Consider the following formula from Taylor�s Theorem:

f(x0 + v) = f(x0) +rf(x0) � v +
1

2
vT
�
H
���
x0+kv

�
v.

At a critical point, rf(x0) = 0, and so

f(x0 + v) = f(x0) +
1

2
vT
�
H
���
x0+kv

�
v.

Hence, if vT
�
H
���
x0+kv

�
v is positive for all small nonzero vectors v, then f will

have a local minimum at x0. (Similarly, if vT
�
H
���
x0+kv

�
v is negative, f will

have a local maximum.) But since we assume that f has continuous second partial

derivatives, vT
�
H
���
x0+kv

�
v is continuous in v and k, and will be positive for small

v if vT
�
H
���
x0

�
v is positive for all nonzero v. Hence,

THEOREM 3
Given the conditions of Taylor�s Theorem for a set A and a function f : A !
R, f has a local minimum at a critical point x0 if vT

�
H
���
x0

�
v > 0 for all

nonzero vectors v. Similarly, f has a local maximum at a critical point x0 if

vT
�
H
���
x0

�
v < 0 for all nonzero vectors v.

I Positive De�nite Quadratic Forms
If v is a vector in Rn, and A is an n � n matrix, the expression vTAv is known
as a quadratic form. (For more details on the general theory of quadratic forms,
see Section 8.11.) A quadratic form such that vTAv > 0 for all nonzero vectors v
is said to be positive de�nite. Similarly, a quadratic form such that vTAv < 0
for all nonzero vectors v is said to be negative de�nite.

Now, in particular, the expression vT
�
H
���
x0

�
v in Theorem 3 is a quadratic

form. Theorem 3 then says that if vT
�
H
���
x0

�
v is a positive de�nite quadratic

form at a critical point x0, then f has a local minimum at x0. Theorem 3 also

says that if vT
�
H
���
x0

�
v is a negative de�nite quadratic form at a critical point

x0, then f has a local maximum at x0. Therefore, we need a method to determine
whether a quadratic form of this type is positive de�nite or negative de�nite.

Now, the Hessian matrix
�
H
���
x0

�
, which we will abbreviate as H, is sym-

metric because @2f
@xi@xj

= @2f
@xj@xi

(since f 2 C2(A)). Hence, by Theorem 6.20, H
can be orthogonally diagonalized. That is, there is an orthogonal matrix P such
that PHPT = D, a diagonal matrix, and so, H = PTDP. Hence, vTHv =
vTPTDPv = (Pv)

T
D(Pv). Letting w = Pv, we get vTHv = wTDw. But

P is nonsingular, so as v ranges over all of Rn, so does w, and vice-versa. Thus,
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vTHv > 0 for all nonzero v if and only if wTDw > 0 for all nonzero w. Now, D
is diagonal, and so wTDw = d11w

2
1 + d22w

2
2 + � � � + dnnw2n. But the dii�s are the

eigenvalues of H. Thus, it follows that wTDw > 0 for all nonzero w if and only if
all of these eigenvalues are positive. (Set w = ei for each i to prove the �only if�
part of this statement.) Similarly, wTDw < 0 for all nonzero w if and only if all
of these eigenvalues are negative. Hence,

THEOREM 4
A symmetric matrix A de�nes a positive de�nite quadratic form vTAv if and
only if all of the eigenvalues of A are positive. A symmetric matrix A de�nes a
negative de�nite quadratic form vTAv if and only if all of the eigenvalues of A
are negative.

Hence, Theorem 3 can be restated as follows:

Given the conditions of Taylor�s Theorem for a set A and a function f : A! R:
(1) if all of the eigenvalues of H are positive at a critical point x0, then f has a
local minimum at x0, and
(2) if all of the eigenvalues of H are positive at a critical point x0, then f has a
local minimum at x0.

Example 2 Consider the function

f(x; y) = 7x2 + 6xy + 2x+ 7y2 � 22y + 23:

In Example 1, we found that f has a critical point at x0 = [�1; 2]. Now, the
Hessian matrix for f at x0 is

H =

24 @2f
@x2

@2f
@x@y

@2f
@y@x

@2f
@y2

35������
x0

=

�
14 6

6 14

�
.

But pH(x) = x2 � 28x + 160, which has roots x = 8 and x = 20. Thus, H has all
eigenvalues positive, and hence, vTHv is positive de�nite. Theorem 4 then tells us
that x0 = [�1; 2] is a local minimum for f . �

I Local Maxima and Minima in R2
It can be shown (see Exercise 3) that a 2�2 symmetric matrix A de�nes a positive
de�nite quadratic form (vTAv > 0 for all nonzero v) if and only if a11 > 0 and
jAj > 0. Similarly, a 2 � 2 symmetric matrix de�nes a negative de�nite quadratic
form (vTAv < 0 for all nonzero v) if and only if a11 < 0 and jAj > 0.

Example 3 Suppose f(x; y) = 2x2 � 2x2y2 + 2y2 + 24y � x4 � y4. First, we look for critical
points by solving the system8><>:

@f
@x = 4x� 4xy

2 � 4x3 = 4x(1� (y2 + x2)) = 0

@f
@y = �4x

2y + 4y + 24� 4y3 = �4y(x2 + y2) + 4y + 24 = 0
:

Now @f
@x = 0 yields x = 0 or y

2+x2 = 1. If x = 0, then @f
@y = 0 gives 4y+24�4y

3 = 0.
The unique real solution to this equation is y = 2. Thus, [0; 2] is a critical point.
If x 6= 0, then y2 + x2 = 1. From @f

@y = 0, we have 0 = �4y(1) + 4y + 24 = 24,
a contradiction, so there is no critical point when x 6= 0.
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Next, we compute the Hessian matrix at the critical point [0; 2].

H =

24 @2f
@x2

@2f
@x@y

@2f
@y@x

@2f
@y2

35������
[0;2]

=

�
4� 4y2 � 12x2 �8xy

�8xy �4x2 + 4� 12y2
�����
[0;2]

=

�
�12 0

0 �44

�
:

Since the (1; 1) entry is negative and jHj > 0,H de�nes a negative de�nite quadratic
form and so f has a local maximum at [0; 2]. �

I An Example in R3

Example 4 Consider the function

g(x; y; z) = 5x2 + 2xz + 4xy + 10x+ 3z2 � 6yz � 6z + 5y2 + 12y + 21.

We �nd the critical points by solving the system8>>><>>>:
@g
@x = 10x + 2z + 4y + 10 = 0

@g
@y = 4x � 6z + 10y + 12 = 0

@g
@z = 2x + 6z � 6y � 6 = 0

.

Using row reduction to solve this linear system yields the unique critical point
[�9; 12; 16]. The Hessian matrix at [�9; 12; 16] is

H =

266664
@2g
@x2

@2g
@x@y

@2g
@x@z

@2g
@y@x

@2g
@y2

@2g
@y@z

@2g
@z@x

@2g
@z@y

@2g
@z2

377775
����������
[�9;12;16]

=

24 10 4 2

4 10 �6
2 �6 6

35 .

A lengthy computation produces pH(x) = x3�26x2+164x�8. The roots of pH(x)
are approximately 0:04916, 10:6011, and 15:3497. Since all of these eigenvalues for
H are positive, [�9; 12; 16] is a local minimum for g. �

I Failure of the Hessian Matrix Test
In calculus, we discovered that the second derivative test fails when the second
derivative is zero at a critical point. A similar situation is true in Rn. If the Hessian
matrix at a critical point has 0 as an eigenvalue, and all other eigenvalues have the
same sign, then the function f could have a local maximum, a local minimum, or
neither at this critical point. Of course, if the Hessian matrix at a critical point has
two eigenvalues with opposite signs, the critical point is not a local extreme point
(why?). Exercise 2 illustrates these concepts.

I New Vocabulary
C2(Rn) (functions from Rn to R having continuous second partial derivatives)
critical point (of a function)
gradient (of a function on Rn)
Hessian matrix
local maximum (of a function on Rn)
local minimum (of a function on Rn)
negative de�nite quadratic form
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open hypersphere (in Rn)
positive de�nite quadratic form
Taylor�s Theorem (in Rn)

I Highlights
� The gradient of a function f : Rn ! R is de�ned byrf =

h
@f
@x1
; @f@x2 ; : : : ;

@f
@xn

i
:

� Let A be an open hypersphere about x0, and let f be a function on A with
continuous partial derivatives. If f has a local maximum or minimum at x0,
then rf(x0) = 0:

� For a function f : Rn ! R; its corresponding Hessian matrix H is the n� n
matrix whose (i; j) entry is @2f

@xi@xj
: In particular, for a function f : R2 ! R;

the Hessian matrix H =

24 @2f
@x2

@2f
@x@y

@2f
@y@x

@2f
@y2

35 :
� Taylor�s Theorem in Rn: Let A be an open hypersphere centered at x0 2 Rn,
let u be a unit vector in Rn, and let t 2 R such that x0 + tu 2 A. Sup-
pose f : A! R has continuous second partial derivatives throughout A; that
is, f 2 C2(A). Then there is a c with 0 � c � t such that f(x0+tu) = f(x0)+Pn

i=1
@f
@xi

���
x0
(tui)+

1
2

Pn
i=1

@2f
@x2i

���
x0+cu

(t2u2i )+
Pn

i=1

Pn
j=i+1

@2f
@xi@xj

���
x0+cu

(t2uiuj):

In particular, we have f(x0+v) = f(x0)+
�
rf
���
x0

�
�v + 1

2v
T

�
H
���
x0+kv

�
v,

for some k with 0 � k � 1.

� Let A be an open hypersphere centered at x0 2 Rn: If f : A! R has contin-
uous second partial derivatives throughout A, then f : A! R, f has a local

minimum at a critical point x0 if vT
�
H
���
x0

�
v > 0 for all nonzero vectors v.

Similarly, f has a local maximum at a critical point x0 if vT
�
H
���
x0

�
v < 0

for all nonzero vectors v.

� A quadratic form is an expression of the form vTAv, where v is a vector
in Rn, and A is an n � n matrix. A positive de�nite quadratic form is one
such that vTAv > 0 for all nonzero vectors v. Similarly, a negative de�nite
quadratic form is one such that vTAv < 0 for all nonzero vectors v.

� For a function f : Rn ! R having Hessian matrix H, if vT
�
H
���
x0

�
v is

a positive de�nite quadratic form at a critical point x0, then f has a local

minimum at x0. Similarly, if vT
�
H
���
x0

�
v is a negative de�nite quadratic

form at a critical point x0, then f has a local maximum at x0.

� A symmetric matrix A de�nes a positive de�nite quadratic form vTAv if and
only if all of the eigenvalues of A are positive.

� A symmetric matrix A de�nes a negative de�nite quadratic form vTAv if
and only if all of the eigenvalues of A are negative.

� If f : Rn ! R has Hessian matrix H; and all eigenvalues of H are positive at
a critical point x0, then f has a local minimum at x0.

� If f : Rn ! R has Hessian matrix H; and all eigenvalues of H are negative at
a critical point x0, then f has a local maximum at x0.
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� A 2� 2 symmetric matrix A has a positive de�nite quadratic form vTAv if
and only if a11 > 0 and jAj > 0. Similarly, a 2 � 2 symmetric matrix has a
negative de�nite quadratic form vTAv if and only if a11 < 0 and jAj > 0.

I EXERCISES

1. In each part, solve for all critical points for the given function. Then, for
each critical point, use the Hessian matrix to determine whether the critical
point is a local maximum, a local minimum, or neither.

a)F f(x; y) = x3 + x2 + 2xy � 3x+ y2

b) f(x; y) = 6x2 + 4xy + 3y2 + 8x� 9y
c)F f(x; y) = 2x2 + 2xy + 2x+ y2 � 2y + 5
d) f(x; y) = x3 + 3x2y � x2 + 3xy2 + 2xy � 3x + y3 � y2 � 3y (Hint: To
solve for critical points, �rst set @f@x �

@f
@y = 0.)

e)F f(x; y; z) = 2x2+2xy+2xz+y4+4y3z+6y2z2�y2+4yz3�4yz+z4�z2

a) Show that f(x; y) = (x � 2)4 + (y � 3)2 has a local minimum at [2; 3],
but its Hessian matrix at [2; 3] has 0 as an eigenvalue.

b) Show that f(x; y) = �(x� 2)4+(y� 3)2 has a critical point at [2; 3], its
Hessian matrix at [2; 3] has all nonnegative eigenvalues, but [2; 3] is not
a local extreme point for f .

c) Show that f(x; y) = �(x+1)4�(y+2)4 has a local maximum at [�1;�2],
but its Hessian matrix at [�1;�2] is O and thus has all of its eigenvalues
equal to zero.

d) Show that f(x; y; z) = (x�1)2�(y�2)2+(z�3)4 does not have any local
extreme points. Then verify that its Hessian matrix has eigenvalues of
opposite sign at the function�s only critical point.

a) Prove that a symmetric 2 � 2 matrix A =

�
a b

b c

�
de�nes a positive

de�nite quadratic form if and only if a > 0 and jAj > 0. (Hint: Compute
pA(x) and show that both roots are positive if and only if a > 0 and
jAj > 0.)

b) Prove that a symmetric 2 � 2 matrix A de�nes a negative de�nite
quadratic form if and only if a11 < 0 and jAj > 0.

2.F True or False:

a) If f : Rn ! R has continuous second partial derivatives, then the Hessian
matrix is symmetric.

b) Every symmetric matrix A de�nes either a positive de�nite or a negative
de�nite quadratic form.

c) A Hessian matrix for a function with continuous second partial deriva-
tives evaluated at any point is diagonalizable.

d) vT
�
5 3

3 2

�
v is a positive de�nite quadratic form.

e) vT

24 3 0 0

0 �9 0
0 0 4

35v is a positive de�nite quadratic form.
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I Answers to Selected Exercises
(1) (a) Critical points: (1;�1), (�1; 1); local minimum at (1;�1)

(c) Critical point: (�2; 3); local minimum at (�2; 3)
(e) Critical points: (0; 0; 0); ( 12 ;�

1
2 ;�

1
2 ); (�

1
2 ;

1
2 ;

1
2 ); local minimums at

( 12 ;�
1
2 ;�

1
2 ); (�

1
2 ;

1
2 ;

1
2 )

(4) (a) T

(b) F

(c) T

(d) T

(e) F
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