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Max-Min Problems in R and the Hessian
Matrix

Prerequisite: Section 6.3, Orthogonal Diagonalization

In this section, we study the problem of finding local maxima and minima for real-
valued functions on R™. The method we describe is the higher-dimensional analogue
to finding critical points and applying the second derivative test to functions on R
studied in first-semester calculus.

» Taylor’'s Theorem in R"

Let f € C?(R™), where C?(R") is the set of real-valued functions defined on R"
having continuous second partial derivatives. The method for solving for local
extreme points of f relies upon Taylor’s Theorem with second degree remainder
terms, which we state here without proof. (In the following theorem, an open
hypersphere centered at xg is a set of the form {x € R" | ||x — x¢|| < r} for some
positive real number r.)

THEOREM 1

(Taylor’s Theorem in R™) Let A be an open hypersphere centered at xo € R,
let u be a unit vector in R”, and let ¢ € R such that xg + tu € A. Suppose
f : A — R has continuous second partial derivatives throughout A; that is,
fe CQ(A). Then there is a ¢ with 0 < ¢ <t such that
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Taylor’s Theorem in R”™ is derived from the familiar Taylor’s Theorem in R
by applying it to the function g(t) = f(xo + tu). In R?, the formula in Taylor’s
Theorem is

af 0
t = —_— t — t
f(xo0 +tu) f<x0)+8x XU(U1)+ ay XO(U2)
1 9°f 2,2 1 o*f 2,2
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Recall that the gradient of f is defined by Vf = [%, (,;%, cee E?T{J If we
let v = tu, then, in R?, v = [v1,vs] = [tus,tus], and so the sum % (tur) +
Xo

dy xo

of (tus) simplifies to (V f y ) -v. Also, since f has continuous second partial
0
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» Critical Points
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derivatives, we have 21 = 2f Therefore,
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where v is considered to be a column vector. The matrix

2 9°f

dxz2  Ozdy
H =

f  of

Oydx  Oy?

in this expression is called the Hessian matrix for f. Thus, in the R? case, with
v = tu, the formula in Taylor’s Theorem can be written as
) V,
xo+kv

1 T
: VI (H
X0> v + 2V (

for some k with 0 <k <1 (where k = £). While we have derived this result in R2?,

the same formula holds in R™, where the Hessian H is the matrix whose (i, j) entry
8% f

is Ox;0x;*

f(X0+V):f(X0)+<

If A is a subset of R™, then we say that f : A — R has a local maximum at a point
X € A if and only if there is an open neighborhood U of x¢ such that f(xq) > f(x)
for all x € U. A local minimum for a function f is defined analogously.

THEOREM 2
Let A be an open hypersphere centered at xg € R™, and let f : A — R have

continuous first partial derivatives on A. If f has a local maximum or a local
minimum at xg, then Vf(xq) = 0.

If x¢ is a local maximum, then f(xq+ he;) — f(xg) < 0 for small h. Then,
limy, g+ w < 0. Similarly, lim;,_,q- w > 0. Hence, for

the limit to exist, we must have % = 0. Since this is true for each i, Vf| =0.
Tt xg X0
A similar proof works for local minimums. QED

Points xo at which V f(x¢) = 0 are called critical points.

EXAMPLE 1

Let f : R2 — R be given by
fx,y) = T2° + 6y + 22 + Ty* — 22y + 23.

Then Vf = [14z + 6y + 2, 6x + 14y — 22]. We find critical points for f by solving
Vf =0. This is the linear system

142 + 6y + 2 =0
6r + 1dy — 22 = 0’

which has the unique solution xo = [—1,2]. Hence, by Theorem 2, (—1,2) is
the only possible extreme point for f. (We will see later that (—1,2) is a local
minimum.) |
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» Sufficient Conditions for Local Extreme Points

If x¢ is a critical point for a function f, how can we determine whether x; is a local
maximum or a local minimum? For functions on R, we have the second derivative
test from calculus, which says that if f”(xg) < 0, then xg is a local maximum, but
if f”(xg) > 0, then x¢ is a local minimum. We now derive a similar test in R™.
Consider the following formula from Taylor’s Theorem:
) v.
xo+kv

V.
xo+kv

> v is positive for all small nonzero vectors v, then f will

Floxo+v) = fx0) + Vf(x0) v + v <H

At a critical point, V f(x¢) = 0, and so

oo+ v) = o) + 57 (B

Hence, if v7 <H

xo+kv

have a local minimum at x¢. (Similarly, if v7 (H )V is negative, f will
xo+kv
have a local maximum.) But since we assume that f has continuous second partial

derivatives, v’ <H

) v is continuous in v and k, and will be positive for small
xo+kv

v if vT <H

) v is positive for all nonzero v. Hence,
Xo0

THEOREM 3
Given the conditions of Taylor’s Theorem for a set A and a function f: A —

>V > 0 for all
X0

nonzero vectors v. Similarly, f has a local maximum at a critical point xq if

vT (H

» Positive Definite Quadratic Forms

If v is a vector in R?, and A is an n x n matrix, the expression vI Av is known
as a quadratic form. (For more details on the general theory of quadratic forms,
see Section 8.11.) A quadratic form such that v Av > 0 for all nonzero vectors v
is said to be positive definite. Similarly, a quadratic form such that v Av < 0
for all nonzero vectors v is said to be negative definite.

R, f has a local minimum at a critical point xq if v (H

) v < 0 for all nonzero vectors v.
X0

Now, in particular, the expression v’ (H ) v in Theorem 3 is a quadratic
X0

form. Theorem 3 then says that if v ( H

> v is a positive definite quadratic
X0
form at a critical point xg, then f has a local minimum at x¢. Theorem 3 also

says that if v7 <H v is a negative definite quadratic form at a critical point

X0
Xq, then f has a local maximum at xy. Therefore, we need a method to determine
whether a quadratic form of this type is positive definite or negative definite.

Now, the Hessian matrix | H , which we will abbreviate as H, is sym-

X0
metric because (%LOJ;J = 8938]% (since f € C?(A)). Hence, by Theorem 6.20, H
can be orthogonally diagonalized. That is, there is an orthogonal matrix P such
that PHP? = D, a diagonal matrix, and so, H = PTDP. Hence, vIHv =
vIPTDPv = (Pv)'D(Pv). Letting w = Pv, we get vHv = w’Dw. But
P is nonsingular, so as v ranges over all of R", so does w, and vice-versa. Thus,
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vI'Hv > 0 for all nonzero v if and only if w/Dw > 0 for all nonzero w. Now, D
is diagonal, and so w/ Dw = duw% + d22w§ + -+ dnnw%. But the d;;’s are the
eigenvalues of H. Thus, it follows that w? Dw > 0 for all nonzero w if and only if
all of these eigenvalues are positive. (Set w = e; for each 4 to prove the “only if”
part of this statement.) Similarly, w/Dw < 0 for all nonzero w if and only if all
of these eigenvalues are negative. Hence,

THEOREM 4

A symmetric matrix A defines a positive definite quadratic form v7 Av if and
only if all of the eigenvalues of A are positive. A symmetric matrix A defines a
negative definite quadratic form v7 Av if and only if all of the eigenvalues of A
are negative.

Hence, Theorem 3 can be restated as follows:

Given the conditions of Taylor’s Theorem for a set A and a function f: A — R:
(1) if all of the eigenvalues of H are positive at a critical point xg, then f has a
local minimum at xg, and

(2) if all of the eigenvalues of H are positive at a critical point xg, then f has a
local minimum at xg.

EXAMPLE 2

Consider the function

f(z,y) = 722 + 6xy + 2 + Ty® — 22y + 23.

In Example 1, we found that f has a critical point at xo = [-1,2]. Now, the
Hessian matrix for f at xg is
2°f  9°f
9z2  Ozd
H— z 0y _ 14 6 '
o%f  9*f 6 14

Oydxr  0y? X0

But pu(x) = 2?2 — 282 + 160, which has roots z = 8 and z = 20. Thus, H has all
eigenvalues positive, and hence, v Hv is positive definite. Theorem 4 then tells us
that xo = [—1, 2] is a local minimum for f. |

» Local Maxima and Minima in R?

It can be shown (see Exercise 3) that a 2 x 2 symmetric matrix A defines a positive
definite quadratic form (vZ'Av > 0 for all nonzero v) if and only if a;; > 0 and
|A| > 0. Similarly, a 2 x 2 symmetric matrix defines a negative definite quadratic
form (vI'Av < 0 for all nonzero v) if and only if a;; < 0 and |A| > 0.

EXAMPLE 3

Suppose f(z,y) = 22% — 22%y? 4 2y% + 24y — 2* — y*. First, we look for critical
points by solving the system

% =4z — day? — 423 = 42(1 — (y* + 22)) =0

L= —da?y+dy+24—dy® = —dy(a® +y?) + 4y +24=0
Now % = Oyieldsz = 0or y?+z? = 1. If x = 0, then % = 0 gives 4y+24—4y> = 0.
The unique real solution to this equation is y = 2. Thus, [0, 2] is a critical point.

If x # 0, then 32 4+ 22 = 1. From % =0, we have 0 = —4y(1) + 4y + 24 = 24,
a contradiction, so there is no critical point when x # 0.
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Next, we compute the Hessian matrix at the critical point [0, 2].

H =

—8xy

[0,2]
4 — 4y? — 1222
—4?

—8xy
+4 —12y?

B {—12 0}
0.2 0 —44

Since the (1, 1) entry is negative and |H| > 0, H defines a negative definite quadratic
form and so f has a local maximum at [0, 2]. |

» An Example in R?

EXAMPLE 4 Consider the function

g(x,y,2) = 5x? 4+ 2xz + 4oy + 10z + 32° — 6yz — 62 + 5y + 12y + 21.

We find the critical points by solving the system

= 10z + 2z + 4y + 10

0

= 4z — 62 + 10y + 12 = 0 .

= 2z + 6z — 6y — 6 =0

Using row reduction to solve this linear system yields the unique critical point
[—9,12,16]. The Hessian matrix at [—9,12,16] is

8%y
Ox2

_ 8%y
H= Oyoz

8%y
0z0x

8%g
Oz 0y

%
Oy?

8%g
020y

629
0xdz

8%y
Oyoz

%9
022

10 4 2
= 4 10 —6
2 -6 6

[—9,12,16]

A lengthy computation produces pg(z) = 2® — 2622 4+ 1642 — 8. The roots of px(z)
are approximately 0.04916, 10.6011, and 15.3497. Since all of these eigenvalues for
H are positive, [—9,12,16] is a local minimum for g. |

» Failure of the Hessian Matrix Test

In calculus, we discovered that the second derivative test fails when the second
derivative is zero at a critical point. A similar situation is true in R™. If the Hessian
matrix at a critical point has 0 as an eigenvalue, and all other eigenvalues have the
same sign, then the function f could have a local maximum, a local minimum, or
neither at this critical point. Of course, if the Hessian matrix at a critical point has
two eigenvalues with opposite signs, the critical point is not a local extreme point
(why?). Exercise 2 illustrates these concepts.

» New Vocabulary

C?(R") (functions from R” to R having continuous second partial derivatives)
critical point (of a function)

gradient (of a function on R™)

Hessian matrix

local maximum (of a function on R™)
local minimum (of a function on R™)
negative definite quadratic form

ANDRILLI/HECKER—ELEMENTARY LINEAR ALGEBRA, 4TH ED.—MARCH 15, 2010

Copyright © 2010, Elsevier Inc. All rights reserved.



open hypersphere (in R™)
positive definite quadratic form
Taylor’s Theorem (in R™)

> Highlights
e The gradient of a function f : R® — Risdefined by V f = [ﬁ or ﬁ} .

Ox1? Oxa " ? Oz,

e Let A be an open hypersphere about xg, and let f be a function on A with
continuous partial derivatives. If f has a local maximum or minimum at x,
then V f(xg) = 0.

e For a function f : R™ — R, its corresponding Hessian matrix H is the n x n

2
matrix whose (i, j) entry is % In particular, for a function f : R? — R,
T J
2f o
. . 0z?2  Ozdy
the Hessian matrix H =
?r  *f
Oydxr  Oy?

e Taylor’s Theorem in R™: Let A be an open hypersphere centered at xg € R™,
let u be a unit vector in R™, and let ¢ € R such that x¢o + tu € A. Sup-
pose f: A — R has continuous second partial derivatives throughout A; that
is, f € C%(A). Then there is a ¢ with 0 < ¢ < t such that f(xo+tu) = f(x0)+

9 1 a2 9?
Py a—i . (tui)+5 >y aijc ten (tPu?)+> 0, Z?:iJrl Wafzj)xwm (t2uiuy).
In particular, we have f(xo+v) = f(x0)+ (Vf’ )-v + vT <H > v,
X0 xo+kv
for some k with 0 < k£ < 1.

e Let A be an open hypersphere centered at xg € R™. If f: A — R has contin-
uous second partial derivatives throughout A, then f: A — R, f has a local

v > 0 for all nonzero vectors v.

>v<0
X0

e A quadratic form is an expression of the form v7 Av, where v is a vector
in R™, and A is an n X n matrix. A positive definite quadratic form is one
such that vZ'Av > 0 for all nonzero vectors v. Similarly, a negative definite
quadratic form is one such that vZ' Av < 0 for all nonzero vectors v.

) v is
X0

a positive definite quadratic form at a critical point xg, then f has a local

minimum at a critical point x¢ if v’ (H
X0

Similarly, f has a local maximum at a critical point xq if v7 (H

for all nonzero vectors v.

e For a function f : R® — R having Hessian matrix H, if v7 (H

minimum at x¢. Similarly, if v’ <H ) v is a negative definite quadratic
X0

form at a critical point xg, then f has a local maximum at xg.

e A symmetric matrix A defines a positive definite quadratic form v7 Av if and
only if all of the eigenvalues of A are positive.

e A symmetric matrix A defines a negative definite quadratic form v’ Av if
and only if all of the eigenvalues of A are negative.

e If f:R™ — R has Hessian matrix H, and all eigenvalues of H are positive at
a critical point xg, then f has a local minimum at xg.

e If f:R™ — R has Hessian matrix H, and all eigenvalues of H are negative at
a critical point xg, then f has a local maximum at xg.
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» EXERCISES

7

e A 2 x 2 symmetric matrix A has a positive definite quadratic form v7 Av if
and only if a;; > 0 and |A| > 0. Similarly, a 2 X 2 symmetric matrix has a
negative definite quadratic form v Av if and only if a;; < 0 and |A| > 0.

1. In each part, solve for all critical points for the given function. Then, for
each critical point, use the Hessian matrix to determine whether the critical
point is a local maximum, a local minimum, or neither.

* a) f(z,y) = 2% + 2% + 22y — 3z + 4°
b) f(x,y) = 622 + 4oy + 3y> + 8z — Yy
* c) f(z,y) =222+ 2zy +22+ 9> -2y +5
d) f(z,y) = 2 + 32%y — 22 + 3wy® + 22y — 3 + y> — y? — 3y (Hint: To
solve for critical points, first set 37 - % =0.)

* e) f(z,y,2) = 202+ 22y + 222 +y* + 4922+ 6y 22 —y® +4yz3 — dyz + 2% — 22

a) Show that f(z,y) = (z — 2)* + (y — 3)? has a local minimum at [2, 3],
but its Hessian matrix at [2,3] has 0 as an eigenvalue.

b) Show that f(z,y) = —(z —2)* + (y — 3)? has a critical point at [2, 3], its
Hessian matrix at [2, 3] has all nonnegative eigenvalues, but [2, 3] is not
a local extreme point for f.

c) Show that f(z,y) = —(z+1)*—(y+2)* has a local maximum at [—1, —2],
but its Hessian matrix at [—1, —2] is O and thus has all of its eigenvalues
equal to zero.

d) Show that f(z,y,2) = (x—1)2—(y—2)2+(2—3)* does not have any local
extreme points. Then verify that its Hessian matrix has eigenvalues of
opposite sign at the function’s only critical point.

ab

b c
definite quadratic form if and only if @ > 0 and |A| > 0. (Hint: Compute
pa(z) and show that both roots are positive if and only if @ > 0 and
|A| >0.)

b) Prove that a symmetric 2 x 2 matrix A defines a negative definite
quadratic form if and only if a1; < 0 and |A| > 0.

a) Prove that a symmetric 2 x 2 matrix A = [ } defines a positive

% 2. True or False:

a) If f : R™ — R has continuous second partial derivatives, then the Hessian
matrix is symmetric.

b) Every symmetric matrix A defines either a positive definite or a negative
definite quadratic form.

c) A Hessian matrix for a function with continuous second partial deriva-
tives evaluated at any point is diagonalizable.

d) v7 [ g ; ] v is a positive definite quadratic form.

3 00
e) vI'| 0 —9 0 | v is a positive definite quadratic form.
0 04

ANDRILLI/HECKER—ELEMENTARY LINEAR ALGEBRA, 4TH ED.—MARCH 15, 2010

Copyright © 2010, Elsevier Inc. All rights reserved.



8

» Answers to Selected Exercises
(1) (a) Critical points: (1,—1), (=1, 1); local minimum at (1,—1)
(c) Critical point: (—2,3); local minimum at (—2,3)
(e) Critical points: ((1),01,0), (%,f%,f%), (f%,%,%); local minimums at

(%7 _%7 _%)7 (_%7 2 E)

CHCIE R
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